# **Assessment of different serological assays for anti-HBs** testing; results from a quality assessment program in 2013

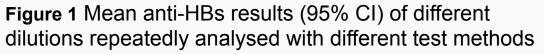
## Stijn Raven (1,2) J.L.A. Hautvast (1) J.E. van Steenbergen (3,4) R. Akkermans (1) C. Weykamp (5,6) F. Smits (1) C.J.P.A. Hoebe (2,7) A.C.T.M. Vossen (8)

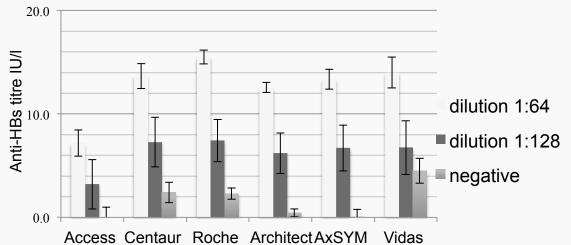
1: Academic Collaborative Centre for Public Health AMPHI, Department of Primary and Community Care, Radboud University Nijmegen Medical Centre, The Netherlands 2: Department of Medical Microbiology, School of Public Health and Primary Care (CAPHRI), Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands. 3: Centre for Infectious Disease Control, Netherlands Institute of Public Health and the Environment, Bilthoven, The Netherlands. 4: Centre of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands. 5: MCA Laboratory, Queen Beatrix Hospital, Winterswijk, The Netherlands. 6: On behalf of the Dutch Foundation for Quality Assessment in Medical Laboratories (SKML) 7: Department of Sexual Health, Infectious Diseases and Environmental Health, South Limburg Public Health Service, The Netherlands 8: Department of Medical Microbiology, Leiden University Medical Centre, The Netherlands

#### Background

- Post-vaccination testing after hepatitis B vaccination is indispensable to evaluate long-term immunological protection and necessary for correct clinical management of specific risk groups.
- Using a threshold level of antibodies against hepatitis B surface antigen (anti-HBs) to define serological protection, implies reproducible and valid measurements of different diagnostic assays.
- In this study we assess the performance of different currently used anti-HBs assays.

#### **Methods**


In 2013, 42 laboratories participated in an external quality assessment (EQA) program with a set of six pooled anti-HBs serum samples around the cutoff values 10 IU/I and 100 IU/I.


Laboratories used either Axsym (Abbott Laboratories), Architect (Abbott Laboratories), Access (Beckman-Coulter), ADVIA Centaur anti-HBs2 (Siemens Healthcare Diagnostics), Elecsys, Modular or Cobas (Roche Diagnostics) or Vidas Total Quick (Biomerieux) for anti-HBs titre quantification.

All assays were calibrated against the 1st International Reference Preparation WHO 1977. We analysed covariance using mixedmodel repeated measures. For the assessment of sensitivity/specificity and agreement a true positive or true negative result was defined as an anti-HBs titre respectively above or below the cutoff value by  $\geq$  4 of 6 assays.

#### **Results**

Different anti-HBs assays were associated with statistically significant differences in anti-HBs titres in all dilutions. Sensitivity and specificity ranged respectively from 64% - 100% and 95% -100%. Agreement between different assays around an anti-HBs titre cutoff value 10 IU/I ranged from 93%-100% and was 44% for a cutoff value of 100 IU/I.





#### Table 1 Characteristics of 6 samples and results of agreement and the mixed model, N=494

| Sample   | (N)   | -     | HBs<br>n (SD) | Coefficient of variation | Agreement<br>(%) | Fixed<br><i>P</i> - valı |            |
|----------|-------|-------|---------------|--------------------------|------------------|--------------------------|------------|
|          |       | (IU/I | )             | (%)                      |                  | test method              | test round |
| Negative | (123) | 1,1   | (1.5)         | -                        | 100%             | <0.05                    | 0.60       |
| 1:512    | (83)  | 2,1   | (1,2)         | 57%                      | 100%             | <0.05                    | 0.69       |
| 1:128    | (84)  | 6,4   | (1,9)         | 30%                      | 99%              | <0.05                    | 0.81       |
| 1:64     | (80)  | 13,2  | (2,3)         | 17%                      | 93%              | <0.05                    | 0.19       |
| 1:8      | (39)  | 98,4  | (17,5)        | 17%                      | 44%              | n.a.*                    | n.a.       |
| 1:4      | (85)  | 192   | (37.7)        | 20%                      | 100%             | <0.05                    | 0.58       |

\* n.a.: not applicable, measurements available of one test round and therefore not suitable for a mixed model

 
 Table 2 Sensitivity calculated for different assays
compared to an anti-HBs titre cutoff of 10 IU/I and 100 IU/I

|               | Sensitivity % (*) |            |  |  |
|---------------|-------------------|------------|--|--|
| Test assay    | 10 IU/I           | 100 IU/I   |  |  |
|               |                   |            |  |  |
| Architect     | 99 (1/94)         | 69 (18/58) |  |  |
| Vidas         | 100 (0/10)        | 100 (0/6)  |  |  |
| ADVIA Centaur | 100 (0/15)        | 100 (0/9)  |  |  |
| Roche         | 100 (0/48)        | 100 (0/28) |  |  |
| AxSYM         | 100 (0/23)        | 93 (1/14)  |  |  |
| Access        | 64 (5/14)         | 67 (3/9)   |  |  |

<sup>\*</sup>100 – (No. false-negative / total no. of true positive samples (at least 4 of 6assays) anti-HBs ≥ 10IU/I or ≥ 100IU/I)) x 100

### **Conclusions**

- EQA programs are indispensable to achieve standardisation among laboratories
- Anti-HBs assays produce different results around clinically relevant cutoff values
- Lack of agreement between assays is mostly due to false-negative results of two assays